
1

2

Introduction to Wireshark and Its Importance in Cybersecurity
Wireshark is a widely used network protocol analyzer that allows security professionals, system
administrators, and network engineers to capture and inspect traffic in real time. It provides a detailed view
of network communications, helping users analyze packets at a granular level.

WhyWireshark is Used in Cybersecurity?

Network Traffic Analysis

1. Helps monitor and analyze real-time data transmission across a network.
2. Identifies unusual traffic patterns that could indicate a cyber attack.

Intrusion Detection and Threat Hunting

1. Detects signs of malicious activity, such as unauthorized access or malware communication.
2. Assists in tracking down the source of an attack by analyzing traffic behavior.

Packet Inspection and Forensics

1. Examines network packets to identifymalware-infected data or suspicious payloads.
2. Helps in post-incident investigations to understand how a breach occurred.

Performance Monitoring and Troubleshooting

1. Identifies network congestion, dropped packets, and misconfigurations affecting
performance.

2. Troubleshoots network latency and connectivity issues efficiently.

Penetration Testing and Ethical Hacking

1. Used to analyze vulnerabilities in network security protocols.
2. Helps ethical hackers understand how attackers can intercept and manipulate network

traffic.

Decrypting Encrypted Traffic (When applicable)

1. Allows inspection of unencrypted and weakly encrypted data.
2. Aids in ensuring sensitive information is not exposed over the network.

Wireshark is an essential tool in cybersecurity defense, providing visibility into network traffic to
identify vulnerabilities, detect attacks, and enhance overall security.

Export Objects (Files)
Wireshark can extract files transferred through the wire. For a security analyst, it is vital to discover
shared files and save them for further investigation. Exporting objects are available only for selected
protocol's streams (DICOM, HTTP, IMF, SMB and TFTP).

3

Time Display Format
Wireshark lists the packets as they are captured, so investigating the default flow is not always the best
option. By default, Wireshark shows the time in "Seconds Since Beginning of Capture", the common
usage is using the UTC Time Display Format for a better view. You can use the "View --> Time
Display Format" menu to change the time display format.

4

Expert Info
Wireshark also detects specific states of protocols to help analysts easily spot possible anomalies and
problems. Note that these are only suggestions, and there is always a chance of having false
positives/negatives. Expert info can provide a group of categories in three different severities. Details
are shown in the table below.

Severity Colour Info

Chat Blue Information on usual workflow.

Note Cyan Notable events like application error codes.

Warn Yellow
Warnings like unusual error codes or problem statements.

Error Red Problems like malformed packets.

5

Frequently encountered information groups are listed in the table below. You can refer to Wireshark's
official documentation for more information on the expert information entries.

Group Info Group Info

Checksum Checksum errors. Deprecated
Deprecated protocol
usage.

Comment
Packet comment
detection.

Malformed
Malformed packet
detection.

Apply as Filter
This is the most basic way of filtering traffic. While investigating a capture file, you can click on the
field you want to filter and use the "right-click menu"
or "Analyse --> Apply as Filter" menu to filter the specific value. Once you apply the filter,
Wireshark will generate the required filter query, apply it, show the packets according to your choice,
and hide the unselected packets from the packet list pane. Note that the number of total and displayed
packets are always shown on the status bar.

6

Conversation filter
"Conversation Filter" option helps you view only the related packets and hide the rest of the packets
easily. You can use the"right-click menu" or "Analyse -
-> Conversation Filter" menu to filter conversations.

Colourise Conversation
This option is similar to the "Conversation Filter" with one difference. It highlights the linked
packets without applying a display filter and decreasing the number of viewed packets. This option
works with the "Colouring Rules" option ad changes the packet colours without considering the
previously applied colour rule. You can use the "right-click menu" or "View --> Colourise
Conversation" menu to colourise a linked packet in a single click. Note that you can use the "View
--> Colourise Conversation --> Reset Colourisation" menu to undo this operation.

7

Prepare as Filter
Similar to "Apply as Filter", this option helps analysts create display filters using the "right-click" menu.
However, unlike the previous one, this model doesn't apply the filters after the choice. It adds the
required query to the pane and waits for the execution command (enter) or another chosen filtering
option by using the ".. and/or.." from the "right-click menu".

8

Apply as Column
By default, the packet list pane provides basic information about each packet. You can use the
"right-click menu" or "Analyse --> Apply as
Column" menu to add columns to the packet list pane. Once you click on a value and apply it as a
column, it will be visible on the packet list pane. This function helps analysts examine the appearance
of a specific value/field across the available packets in the capture file. You can enable/disable the
columns shown in the packet list pane by clicking on the top of the packet list pane.

9

Follow Stream

Wireshark displays everything in packet portion size. However, it is possible to reconstruct the streams
and view the raw traffic as it is presented at the application level. Following the protocol, streams help
analysts recreate the
application-level data and understand the event of interest. It is also possible to view the unencrypted
protocol data like usernames, passwords and other transferred data.

You can use the"right-click menu" or "Analyse --> Follow TCP/UDP/HTTP Stream" menu to
follow traffic streams. Streams are shown in a separate dialogue box; packets originating from the
server are highlighted with blue, and those originating from the client are highlighted with red.

Once you follow a stream, Wireshark automatically creates and applies the required filter to view the
specific stream. Remember, once a filter is applied, the number of the viewed packets will change. You
will need to use the "X button" located on the right upper side of the display filter bar to remove the
display filter and view all available packets in the capture file.

Statistics
This menu provides multiple statistics options ready to investigate to help users see the big picture
in terms of the scope of the traffic, available protocols, endpoints and conversations, and some
protocol-specific details like DHCP, DNS and HTTP/2. For a security analyst, it is crucial to know
how to utilise the statical information. This section provides a quick summary of the processed
pcap, which will help analysts create a hypothesis for an investigation. You can use the
"Statistics" menu to view all available

10

options. Now start the given VM, open the Wireshark, load the "Exercise.pcapng" file and go
through the walkthrough.

Resolved Addresses
This option helps analysts identify IP addresses and DNS names available in the capture file by
providing the list of the resolved addresses and their hostnames. Note that the hostname information is
taken from DNS answers in the capture file. Analysts can quickly identify the accessed resources by
using this menu.
Thus they can spot accessed resources and evaluate them according to the event of interest. You can use
the "Statistics --> Resolved Addresses" menu to view all resolved addresses by Wireshark.

Protocol Hierarchy
This option breaks down all available protocols from the capture file and helps analysts view the
protocols in a tree view based on packet counters and percentages. Thus analysts can view the overall
usage of the ports and services and focus on the event of interest. The golden rule mentioned in the
previous
room is valid in this section; you can right-click and filter the event of interest. You can use the
"Statistics --> Protocol Hierarchy" menu to view this info.

11

Conversations
Conversation represents traffic between two specific endpoints. This option provides the list of the
conversations in five base formats; ethernet, IPv4, IPv6, TCP and UDP. Thus analysts can identify
all conversations and contact endpoints for the event of interest. You can use the "Statistic -->
Conversations" menu to view this info.

12

Endpoints
The endpoints option is similar to the conversations option. The only difference is that this option
provides unique information for a single information field (Ethernet, IPv4, IPv6, TCP and UDP). Thus
analysts can identify the unique endpoints in the capture file and use it for the event of interest. You can
use
the "Statistics --> Endpoints" menu to view this info.

Wireshark also supports resolving MAC addresses to human-readable format using the manufacturer
name assigned by IEEE. Note that this conversion is done through the first three bytes of the MAC
address and only works for the known manufacturers. When you review the ethernet endpoints, you can
activate this option with the "Name resolution" button in the lower-left corner of the endpoints
window.

13

Name resolution is not limited only to MAC addresses. Wireshark provides IP and port name
resolution options as well. However, these options are not enabled by default.

If you want to use these functionalities, you need to activate them through the "Edit -->
Preferences --> Name Resolution" menu. Once you enable IP and port name resolution,
you will see the resolved IP address and port names in the packet list pane and also will be
able to view resolved names in the "Conversations" and "Endpoints" menus as well.

14

Endpoint menu view with name resolution:

Besides name resolution, Wireshark also provides an IP geolocation mapping that helps analysts
identify the map's source and destination

15

addresses.

But this feature is not activated by default and needs supplementary data like the GeoIP
database. Currently, Wireshark supports MaxMind databases, and the latest versions of the
Wireshark come configured MaxMind DB
resolver. However, you still need MaxMind DB files and provide the database path to Wireshark by
using the "Edit --> Preferences --> Name Resolution --> MaxMind database directories" menu.
Once you download and indicate the path, Wireshark will automatically provide GeoIP information
under the IP
protocol details for the matched IP addresses.

Endpoints and GeoIP view.

IPv4 and IPv6

16

Up to here, almost all options provided information that contained both versions of the IP addresses.
The statistics menu has two options for narrowing the statistics on packets containing a specific IP
version. Thus, analysts can identify and list all events linked to specific IP versions in a single window
and use it for the event of interest. You can use the "Statistics --> IPvX Statistics" menu to view this
info.

DNS
This option breaks down all DNS packets from the capture file and helps analysts view the findings in a
tree view based on packet counters and percentages of the DNS protocol. Thus analysts can view the
DNS service's overall usage, including rcode, opcode, class, query type, service and query stats and use
it for the event of interest. You can use the "Statistics --> DNS" menu to view this info.

17

HTTP
This option breaks down all HTTP packets from the capture file and helps analysts view the findings
in a tree view based on packet counters and percentages of the HTTP protocol. Thus analysts can
view the HTTP service's overall usage, including request and response codes and the original
requests. You can use the "Statistics --> HTTP" menu to view this info.

18

Bookmarks and Filtering Buttons
We've covered different types of filtering options, operators and functions. It is time to create filters and
save them as bookmarks and buttons for later usage. As mentioned in the previous task, the filter toolbar
has a filter bookmark section to save user-created filters, which helps analysts re-use favourite/complex
filters with a couple of clicks. Similar to bookmarks, you can create filter buttons ready to apply with a
single click.

Creating and using bookmarks.

19

Creating and using display filter buttons.

20

Profiles
Wireshark is a multifunctional tool that helps analysts to accomplish in-depth packet analysis. As we
covered during the room, multiple preferences need to be configured to analyse a specific event of
interest. It is cumbersome to re-change the configuration for each investigation case, which requires a
different set of colouring rules and filtering buttons. This is where Wireshark profiles come into play.
You can create multiple profiles for different investigation cases and use
them accordingly. You can use the "Edit --> Configuration Profiles" menu or the "lower right
bottom of the status bar --> Profile" section to create, modify and change the profile configuration.

Packet Filtering

Capture Filters
This type of filter is used to save only a specific part of the traffic. It is set
before capturing traffic and not changeable during the capture.

Display Filters
This type of filter is used to investigate packets by reducing the number of
visible packets, and it is changeable during the capture.

Note: You cannot use the display filter expressions for capturing traffic and vice versa.

21

The typical use case is capturing everything and filtering the packets according to the event of interest.
Only experienced professionals use capture filters and sniff traffic. This is why Wireshark supports more
protocol types in display filters.

Capture Filter Syntax
These filters use byte offsets hex values and masks with boolean operators, and it is not easy to
understand/predict the filter's purpose at first glance. The base syntax is explained below:

Scope: host, net, port and portrange.

Direction: src, dst, src or dst, src and dst,

Protocol: ether, wlan, ip, ip6, arp, rarp, tcp and udp.

Sample filter to capture port 80 traffic:

You can read more on capture filter syntax from here and here. A quick reference is available under
the "Capture --> Capture Filters" menu.

Display Filter Syntax
This is Wireshark's most powerful feature. It supports 3000 protocols and allows conducting packet-
level searches under the protocol breakdown. The official "Display Filter Reference" provides all
supported protocols breakdown for filtering.

Sample filter to capture port 80 traffic:

Wireshark has a built-in option (Display Filter Expression) that stores all supported protocol
structures to help analysts create display filters. We will cover the "Display Filter Expression" menu
later. Now let's understand the

tcp port 80

tcp.port == 80

22

fundamentals of the display filter operations. A quick reference is available under the "Analyse -->
Display Filters" menu.

Comparison Operators

You can create display filters by using different comparison operators to find the event of interest.
The primary operators are shown in the table below.

English C-Like Description Example

eq == Equal ip.src == 10.10.10.100

ne != Not equal ip.src != 10.10.10.100

gt > Greater than ip.ttl > 250

lt < Less Than ip.ttl < 10

ge >=
Greater than or equal to

ip.ttl >= 0xFA

le <= Less than or equal to ip.ttl <= 0xA

Note:Wireshark supports decimal and hexadecimal values in filtering. You can use any format you
want according to the search you will conduct.

Logical Expressions

Wireshark supports boolean syntax. You can create display filters by using logical operators as well.

English C-Like Description Example

and && Logical AND (ip.src == 10.10.10.100) AND (ip.src ==
10.10.10.111)

or || Logical OR (ip.src == 10.10.10.100) OR (ip.src ==
10.10.10.111)

23

not ! Logical NOT !(ip.src == 10.10.10.222)

Note: Usage of !=value is
deprecated; using it could
provide inconsistent results.
Using the !(value) style is
suggested for more consistent
results.

Packet Filter Toolbar
The filter toolbar is where you create and apply your display filters. It is a smart toolbar that
helps you create valid display filters with ease. Before starting to filter packets, here are a few
tips:

Packet filters are defined in lowercase.

Packet filters have an autocomplete feature to break down protocol details, and each detail is
represented by a "dot".

Packet filters have a three-colour representation explained below.

Green Valid filter

Red Invalid filter

Yellow
Warning filter. This filter works, but it is unreliable, and it is suggested to
change it with a valid filter.

Protocol Filters
As mentioned in the previous task, Wireshark supports 3000 protocols and allows packet-level
investigation by filtering the protocol fields. This task shows the creation and usage of filters
against different protocol fields.

IP Filters
IP filters help analysts filter the traffic according to the IP level information from the packets
(Network layer of the OSI model). This is one of the most commonly used filters in Wireshark.
These filters filter network-level

24

information like IP addresses, version, time to live, type of service, flags, and checksum values.

The common filters are shown in the given table.

Filter Description

ip Show all IP packets.

ip.addr == 10.10.10.111 Show all packets containing IP address 10.10.10.111.

ip.addr == 10.10.10.0/24 Show all packets containing IP addresses from 10.10.10.0/24 subnet.

ip.src == 10.10.10.111 Show all packets originated from 10.10.10.111

ip.dst == 10.10.10.111 Show all packets sent to 10.10.10.111

ip.addr vs ip.src/ip.dst
Note: The ip.addr filters the traffic without considering the packet
direction. The ip.src/ip.dst filters the packet depending on the packet
direction.

TCP
TCP filters help analysts filter the traffic according to protocol-level information from the packets
(Transport layer of the OSI model). These filters filter transport protocol level information like
source and destination ports, sequence number, acknowledgement number, windows size,
timestamps, flags, length and protocol errors.

Filter Description Filter Expression

tcp.port == 80 Show all TCP packets udp.port == 53 Show
with port 80 all UDP packets

with port 53

tcp.srcport== 1234 Show all TCP packets
originating from port 1234

udp.srcport== 1234

Show
all UDP packets
originating from
port 1234

25

tcp.dstport== 80 Show all TCP packets sent
to port 80

udp.dstport== 5353
Show
all UDP packets
sent to port 5353

ApplicationLevel Protocol Filters | andDNS
Application-level protocol filters help analysts filter the traffic according to application protocol
level information from the packets (Application layer of the OSI model). These filters filter
application-specific information, like payload and linked data, depending on the protocol type.

Filter Description Filter Description

http
Show
all HTTP packets

dns
Show
all DNS packets

http.response.code
== 200

Show all packets with
HTTP response code
"200"

dns.flags.response
== 0

Show
all DNS requests

http.request.method
== "GET"

Show all HTTP GET
requests

dns.flags.response
== 1

Show
all DNS responses

http.request.method
== "POST"

Show
all HTTP POST
requests

dns.qry.type==1
Show all DNS "A"
records

26

Display Filter Expressions
Wireshark has a built-in option (Display Filter Expression) that stores all supported protocol
structures to help analysts create display filters. When an analyst can't recall the required filter
for a specific protocol or is unsure about the assignable values for a filter, the Display Filter
Expressions menu provides an easy-to-use display filter builder guide. It is available

under the "Analyse --> Display Filter Expression" menu.

27

Advanced Filtering
So far, you have learned the basics of packet filtering operations. Now it is time to focus on specific
packet details for the event of interest. Besides the operators and expressions covered in the previous
room, Wireshark has advanced operators and functions. These advanced filtering options help the
analyst conduct an in-depth analysis of an event of interest.

Filter: "contains"

Filter contains

Type Comparison Operator

Description
Search a value inside packets. It is case-sensitive and provides similar
functionality to the "Find" option by focusing on a specific field.

Example Find all "Apache" servers.

Workflow
List all HTTP packets where packets' "server" field contains the "Apache"
keyword.

Usage http.server contains "Apache"

Filter: "matches"

Filter matches

Type Comparison Operator

Description
Search a pattern of a regular expression. It is case insensitive, and complex
queries have a margin of error.

Example Find all .php and .html pages.

28

Workflow
List all HTTP packets where packets' "host" fields match keywords ".php" or
".html".

Usage http.host matches "\.(php|html)"

Filter: "in"

Filter in

Type Set Membership

Description Search a value or field inside of a specific scope/range.

Example Find all packets that use ports 80, 443 or 8080.

Workflow
List all TCP packets where packets' "port" fields have values 80, 443 or 8080.

Usage tcp.port in {80 443 8080}

29

Filter: "upper"

Filter upper

Type Function

Description Convert a string value to uppercase.

Example Find all "APACHE" servers.

Workflow
Convert all HTTP packets' "server" fields to uppercase and list packets that
contain the "APACHE" keyword.

Usage upper(http.server) contains "APACHE"

30

Filter: "lower"

Filter lower

Type Function

Description Convert a string value to lowercase.

Example Find all "apache" servers.

Workflow
Convert all HTTP packets' "server" fields info to lowercase and list packets
that contain the "apache" keyword.

Usage lower(http.server) contains "apache"

31

Filter: "string"

Filter string

Type Function

Description Convert a non-string value to a string.

Example Find all frames with odd numbers.

Workflow
Convert all "frame number" fields to string values, and list frames end with
odd values.

Usage string(frame.number) matches "[13579]$"

32

Wireshark: Traffic Analysis
Nmap Scans
Nmap is an industry-standard tool for mapping networks, identifying live hosts and discovering the
services. As it is one of the most used network scanner tools, a security analyst should identify the
network patterns created with it. This section will cover identifying the most common Nmap scan types.

TCP connect scans SYN scans

UDP scans

It is essential to know how Nmap scans work to spot scan activity on the network. However, it is
impossible to understand the scan details without using the correct filters. Below are the base filters to
probe Nmap scan behaviour on the network.

TCP flags in a nutshell.

Notes Wireshark Filters

Global search. • tcp • udp

• Only SYN flag. • SYN flag is
set. The rest of the bits are not
important.

• tcp.flags == 2 • tcp.flags.syn == 1

• Only ACK flag. • ACK flag is
set. The rest of the bits are not
important.

• tcp.flags == 16 • tcp.flags.ack == 1

33

nmap -sT

• Only SYN, ACK flags. • SYN
and ACK are set. The rest of the
bits are not important.

• tcp.flags == 18 • (tcp.flags.syn == 1) and (tcp.flags.ack

== 1)

• Only RST flag. • RST flag is
set. The rest of the bits are not
important.

• tcp.flags == 4 • tcp.flags.reset == 1

• Only RST, ACK flags. • RST
and ACK are set. The rest of the
bits are not important.

• tcp.flags == 20 • (tcp.flags.reset == 1) and (tcp.flags.ack

== 1)

• Only FIN flag • FIN flag is
set. The rest of the bits are
not important.

• tcp.flags == 1 • tcp.flags.fin == 1

TCP
TCP Connect Scan in a nutshell:

Relies on the three-way handshake (needs to finish the handshake process).

Usually conducted with command.

Used by non-privileged users (only option for a non-root user).

Usually has a windows size larger than 1024 bytes as the request expects some data due to the
nature of the protocol.

Open TCP Port Open TCP Port Closed TCP Port

• SYN --> • <-- SYN,
ACK • ACK -->

• SYN --> • <-- SYN, ACK • ACK --> • RST,
ACK -->

• SYN --> • <-- RST,
ACK

The images below show the three-way handshake process of the open and close TCP ports. Images
and pcap samples are split to make the investigation easier and understand each case's details.

Open TCP port (Connect):

34

tcp.flags.syn==1 and tcp.flags.ack==0 and tcp.window_size > 1024

Open TCP Port Close TCP Port

Closed TCP port (Connect):

The above images provide the patterns in isolated traffic. However, it is not always easy to spot the
given patterns in big capture files. Therefore analysts need to use a generic filter to view the initial
anomaly patterns, and then it will be easier to focus on a specific traffic point.

The given filter shows the TCP Connect scan patterns in a capture file.

SYN Scans
TCP SYN Scan in a nutshell:

Doesn't rely on the three-way handshake (no need to finish the handshake process).

Usually conducted with Used by

privileged users.

command.

Usually have a size less than or equal to 1024 bytes as the request is not finished and it doesn't
expect to receive data.

nmap -sS

35

tcp.flags.syn==1 and tcp.flags.ack==0 and tcp.window_size <= 1024

• SYN --> • <-- RST,ACK• SYN --> • <-- SYN,ACK • RST-->

Open TCP port (SYN):

Closed TCP port (SYN):

The given filter shows the TCP SYN scan patterns in a capture file.

UDP
UDP Scan in a nutshell:

Doesn't require a handshake process No prompt for

open ports

ICMP error message for close ports

Usually conducted with command.

Open UDP Port Closed UDP Port

• UDP packet -->
• UDP packet --> • ICMP Type 3, Code 3 message. (Destination
unreachable, port unreachable)

36

Closed (port no 69) and open (port no 68) UDP ports:

The above image shows that the closed port returns an ICMP error packet. No further information is
provided about the error at first glance, so how can an analyst decide where this error message belongs?

The ICMP error message uses the original request as encapsulated data to show the source/reason of
the packet. Once you expand the ICMP section in the packet details pane, you will see the
encapsulated data and the original request, as shown in the below image.

37

icmp.type==3 and icmp.code==3

The given filter shows the UDP scan patterns in a capture file.

38

ARP Poisoning & Man In The Middle!
ARP protocol, or Address Resolution Protocol (ARP), is the technology responsible for allowing
devices to identify themselves on a network.

Address Resolution Protocol Poisoning (also known as ARP Spoofing or Man In The Middle
(MITM) attack) is a type of attack that involves network jamming/manipulating by sending
malicious ARP packets to the default gateway. The ultimate aim is to manipulate the "IP to
MAC address table" and sniff the traffic of the target host.

There are a variety of tools available to conduct ARP attacks. However, the mindset of the attack is
static, so it is easy to detect such an attack by knowing the ARP protocol workflow and Wireshark skills.

ARP analysis in a nutshell:

Works on the local network

Enables the communication between MAC addresses Not a secure

protocol

Not a routable protocol

It doesn't have an authentication function

Common patterns are request & response, announcement and gratuitous packets.

Before investigating the traffic, let's review some legitimate and suspicious ARP packets. The
legitimate requests are similar to the shown
picture: a broadcast request that asks if any of the available hosts use an IP address and a reply from the
host that uses the particular IP address.

Notes Wireshark filter

Global search • arp

"ARP" options for grabbing the low-
hanging fruits: • Opcode
1: ARP requests. • Opcode
2: ARP responses. •Hunt: Arp scanning •
Hunt: Possible ARP poisoning
detection •
Hunt: Possible ARP flooding from
detection:

• arp.opcode == 1 • arp.opcode == 2 •
arp.dst.hw_mac==00:00:00:00:00:00 • arp.duplicate- address-detected or

arp.duplicate-address-frame • ((arp) && (arp.opcode == 1)) &&

(arp.src.hw_mac == target-mac-address)

39

A suspicious situation means having two different ARP responses (conflict) for a particular IP
address.

In that case, Wireshark's expert info tab warns the analyst. However, it only shows the second
occurrence of the duplicate value to highlight the conflict. Therefore, identifying the malicious
packet from the legitimate one is the analyst's challenge. A possible IP spoofing case is shown in
the picture
below.

40

Here, knowing the network architecture and inspecting the traffic for a specific time frame can help
detect the anomaly. As an analyst, you should take notes of your findings before going further. This will
help you be organised and make it
easier to correlate the further findings.

Look at the given picture; there is a conflict; the MAC address that ends with "b4" crafted an ARP
request with the "192.168.1.25" IP address, then claimed to have the "192.168.1.1" IP address.

Notes Detection Notes Findings

Possible IP address match. 1 IP address announced from a
MAC address.

• MAC:
00:0c:29:e2:18:b4
• IP: 192.168.1.25

Possible ARP spoofing
attempt.

2 MAC addresses claimed the same IP
address (192.168.1.1). The "192.168.1.1"
IP address is a possible gateway address.

• MAC1:
50:78:b3:f3:cd:f4
• MAC 2:
00:0c:29:e2:18:b4

Possible ARP flooding
attempt.

The MAC address that ends with "b4"
claims to have a different/new IP address.

• MAC:
00:0c:29:e2:18:b4
• IP: 192.168.1.1

Let's keep inspecting the traffic to spot any other anomalies. Note that the case is split into multiple
capture files to make the investigation easier.

At this point, it is evident that there is an anomaly. A security analyst cannot ignore a flood of ARP
requests. This could be malicious activity, scan or network problems. There is a new anomaly; the MAC
address that ends with "b4" crafted multiple ARP requests with the "192.168.1.25" IP address. Let's
focus on the source of this anomaly and extend the taken notes.

41

Notes Detection Notes Findings

Possible IP address match. 1 IP address announced from a
MAC address.

• MAC:
00:0c:29:e2:18:b4 • IP:
192.168.1.25

Possible ARP spoofing
attempt.

2 MAC addresses claimed the same IP
address (192.168.1.1).The " 192.168.1.1"
IP address is a possible gateway address.

• MAC1:
50:78:b3:f3:cd:f4 •
MAC 2:
00:0c:29:e2:18:b4

Possible ARP spoofing
attempt.

The MAC address that ends with "b4"
claims to have a different/new IP address.

• ​
MAC: 00:0c:29:e2:18:b4
• IP: 192.168.1.1

Possible ARP flooding
attempt.

The MAC address that ends with "b4"
crafted multiple ARP requests against a
range of IP addresses.

• MAC:
00:0c:29:e2:18:b4 • IP:
192.168.1.xxx

Up to this point, it is evident that the MAC address that ends with "b4" owns the "192.168.1.25" IP
address and crafted suspicious ARP requests against a range of IP addresses. It also claimed to have the
possible gateway address as well.
Let's focus on other protocols and spot the reflection of this anomaly in the following sections of the
time frame.

There is HTTP traffic, and everything looks normal at the IP level, so there is no linked information with
our previous findings. Let's add the MAC addresses as columns in the packet list pane to reveal the
communication behind the IP addresses.

42

One more anomaly! The MAC address that ends with "b4" is the destination of all HTTP packets! It is
evident that there is a MITM attack, and the attacker is the host with the MAC address that ends with
"b4". All traffic linked to "192.168.1.12" IP addresses is forwarded to the malicious host. Let's
summarise the findings before concluding the investigation.

Detection Notes Findings

IP to MAC matches. 3 IP to MAC address matches.

Attacker The attacker created noise with ARP packets.

Router/gateway Gateway address.

Victim The attacker sniffed all traffic of the victim.

Detecting these bits and pieces of information in a big capture file is challenging. However, in real-life
cases, you will not have "tailored data" ready for investigation. Therefore you need to have the analyst
mindset, knowledge and
tool skills to filter and detect the anomalies.

Identifying Hosts: DHCP, NetBIOS and Kerberos

Identifying Hosts
When investigating a compromise or malware infection activity, a security analyst should know
how to identify the hosts on the network apart from IP to MAC address match.

One of the best methods is identifying the hosts and users on the network to decide the
investigation's starting point and list the hosts and users associated with the malicious
traffic/activity.

Usually, enterprise networks use a predefined pattern to name users and hosts.

While this makes knowing and following the inventory easier, it has good and bad sides. The good side
is that it will be easy to identify a user or host by looking at the name. The bad side is that it will be easy
to clone that pattern and live in the enterprise network for adversaries. There are multiple solutions to
avoid these kinds of activities, but for a security analyst, it is still essential to have host and
user identification skills.

Protocols that can be used in Host and User identification:

Dynamic Host Configuration Protocol (DHCP) traffic

43

NetBIOS (NBNS) traffic

Kerberos traffic

DHCP
Dynamic Host Configuration Protocol (DHCP), is the technology responsible for managing automatic
IP address and required communication parameters assignment.

DHCP investigation in a nutshell:

Notes Wireshark Filter

Global search. • dhcp or bootp

Filtering the proper DHCP packet options is vital to finding
an event of interest. • "DHCP
Request" packets contain the hostname information •
"DHCP ACK" packets represent the accepted requests •
"DHCP NAK" packets represent denied requests Due to
the nature of the protocol, only "Option 53" (request type)
has predefined static values. You should filter the packet
type first, and then you can filter the rest of the options by
"applying as column" or use the advanced filters like
"contains" and
"matches".

• Request: dhcp.option.dhcp == 3

• ACK: dhcp.option.dhcp == 5 • NAK:
dhcp.option.dhcp == 6

"DHCP Request" options for grabbing the low-
hanging fruits: • Option 12: Hostname. • Option
50: Requested IP address. • Option 51: Requested IP
lease time. • Option 61: Client's MAC address.

• dhcp.option.hostnamecontains "keyword"

"DHCP ACK" options for grabbing the low-hanging fruits: •
Option 15: Domain name. • Option
51: Assigned IP lease time.

• dhcp.option.domain_name contains "keyword"

"DHCP NAK" options for grabbing the low-hanging fruits:
•Option 56:Message (rejection details/reason).

As the message could be unique
according to the case/situation, It is
suggested to read the message
instead of filtering it.
Thus, the analyst could create a
more reliable hypothesis/result by
understanding the event
circumstances.

44

NetBIOS (NBNS) Analysis
NetBIOS or Network Basic Input/Output System is the technology responsible for allowing applications
on different hosts to communicate with each other.

NBNS investigation in a nutshell:

Notes Wireshark Filter

Global search. • nbns

"NBNS" options for grabbing the low-hanging fruits: •
Queries: Query details. • Query details could
contain "name, Time to live (TTL) and IP address details"

• nbns.name contains
"keyword"

NetBIOS registration requests nbns.flags.opcode == 5

45

Kerberos Analysis
Kerberos is the default authentication service for Microsoft Windows domains.

It is responsible for authenticating service requests between two or more computers over the
untrusted network. The ultimate aim is to prove identity securely.

Kerberos investigation in a nutshell:

Notes Wireshark Filter

Global search. • kerberos

User account search: • CNameString: The username. Note: Some packets
could provide hostname information in this field. To avoid this confusion,
filter the "$" value. The values end with "$" are hostnames, and the ones
without it are user names.

• ​
kerberos.CNameString

contains "keyword" •
kerberos.CNameString and !
(kerberos.CNameString contains
"$")

"Kerberos" options for grabbing the low-hanging fruits: •
pvno: Protocol version. • realm: Domain name for the generated ticket. •
sname: Service and domain name for the generated ticket.
• addresses: Client IP address and NetBIOS name. Note: the
"addresses" information is only available in request packets.

• kerberos.pvno==5

• kerberos.realm contains

".org" • kerberos.SNameString
== "krbtg"

46

Tunneling Traffic: DNS and ICMP

Tunnelling Traffic: ICMP andDNS
Traffic tunnelling is (also known as "port forwarding") transferring the data/resources in a secure
method to network segments and zones.

It can be used for "internet to private networks" and "private networks to internet"
flow/direction.

There is an encapsulation process to hide the data, so the transferred data appear natural for the
case, but it contains private data packets and transfers them to the final destination securely.

Tunnelling provides anonymity and traffic security. Therefore it is highly used by enterprise networks.
However, as it gives a significant level of data encryption, attackers use tunnelling to bypass security
perimeters using the standard and trusted protocols used in everyday traffic like ICMP and DNS.
Therefore, for a security analyst, it is crucial to have the ability to spot ICMP and DNS anomalies.

ICMPAnalysis
Internet Control Message Protocol (ICMP) is designed for diagnosing and reporting network
communication issues. It is highly used in error reporting and testing.

As it is a trusted network layer protocol, sometimes it is used for denial of service (DoS) attacks;
also, adversaries use it in data exfiltration and C2

47

tunnelling activities.

ICMP analysis in a nutshell:
Usually, ICMP tunnelling attacks are anomalies appearing/starting after a malware execution or
vulnerability exploitation.

As the ICMP packets can transfer an additional data payload, adversaries use this section to
exfiltrate data and establish a C2 connection.

It could be a TCP, HTTP or SSH data. As the ICMP protocols provide a great opportunity to carry
extra data, it also has disadvantages.

Most enterprise networks block custom packets or require administrator privileges to create
custom ICMP packets.

A large volume of ICMP traffic or anomalous packet sizes are indicators of ICMP tunnelling. Still, the
adversaries could create custom packets that match the
regular ICMP packet size (64 bytes), so it is still cumbersome to detect these tunnelling activities.
However, a security analyst should know the normal and the abnormal to spot the possible anomaly and
escalate it for further analysis.

Notes Wireshark filters

Global search • icmp

"ICMP" options for grabbing the low-hanging fruits: • Packet length. •
ICMP destination addresses. • Encapsulated protocol signs in ICMP
payload.

• data.len > 64 and
icmp

48

DNS Analysis
Domain Name System (DNS) is designed to translate/convert IP domain addresses to IP
addresses.

It is also known as a phonebook of the internet. As it is the essential part of web services, it is
commonly used and trusted, and therefore often ignored. Due to that, adversaries use it in data
exfiltration and C2 activities.

DNS analysis in a nutshell:
Similar to ICMP tunnels, DNS attacks are anomalies appearing/starting after a malware execution
or vulnerability exploitation.

Adversary creates (or already has) a domain address and configures it as a C2 channel. The
malware or the commands executed after exploitation sends DNS queries to the C2 server.

However, these queries are longer than default DNS queries and crafted
for subdomain addresses. Unfortunately, these subdomain addresses are not actual addresses; they
are encoded commands as shown below:

"encoded-commands.maliciousdomain.com"

When this query is routed to the C2 server, the server sends the actual malicious commands to the
host.

As the DNS queries are a natural part of the networking activity, these packets have the chance of
not being detected by network perimeters. A security analyst should know how to investigate the
DNS packet lengths and target addresses to spot these anomalies.

Notes
Wireshark
Filter

Global search • dns

"DNS" options for grabbing the low-hanging fruits: • Query length. •
Anomalous and non-regular names in DNS addresses. •
Long DNS addresses with encoded subdomain addresses. • Known
patterns like dnscat and dns2tcp. • Statistical analysis like the anomalous
volume of DNS requests for a particular target.
!mdns: Disable local link device queries.

• dns contains "dnscat"

• dns.qry.name.len
> 15 and !mdns

49

Cleartext Protocol Analysis: FTP

Cleartext Protocol Analysis
Investigating cleartext protocol traces sounds easy, but when the time comes to investigate a big
network trace for incident analysis and response, the game changes. Proper analysis is more than
following the stream and reading the cleartext data. For a security analyst, it is important to create
statistics and key results from the investigation process. As mentioned earlier at the beginning of the
Wireshark room series, the analyst should have the required network knowledge and tool skills to
accomplish this. Let's simulate a cleartext protocol investigation with Wireshark!

FTP Analysis
File Transfer Protocol (FTP) is designed to transfer files with ease, so it focuses on simplicity rather
than security. As a result of this, using this protocol in unsecured environments could create security
issues like:

MITM attacks

Credential stealing and unauthorised access Phishing

50

Malware planting Data

exfiltration

FTP analysis in a nutshell:

Notes Wireshark Filter

Global search • ftp

"FTP" options for grabbing the low-hanging fruits: • x1x
series: Information request responses. • x2x series:
Connection messages. • x3x
series: Authentication messages. Note: "200"
means command successful.

"x1x" series options for grabbing the low-hanging fruits:
• 211: System status. • 212: Directory status.
• 213: File status

• ftp.response.code == 211

"x2x" series options for grabbing the low-hanging fruits:
• 220: Service ready. • 227: Entering passive mode. •
228: Long passive mode. • 229: Extended passive mode.

• ftp.response.code == 227

"x3x" series options for grabbing the low-hanging
fruits: • 230: User login. • 231: User logout. • 331:
Valid username. • 430: Invalid username or password
• 530: No login, invalid password.

• ftp.response.code == 230

"FTP" commands for grabbing the low-hanging fruits: •
USER: Username. • PASS: Password. • CWD: Current
work directory. • LIST: List.

• ftp.request.command == "USER" •
ftp.request.command == "PASS" • ftp.request.arg
== "password"

Advanced usages examples for grabbing low- hanging
fruits: • Bruteforce signal: List failed login attempts. •
Bruteforce signal: List target username. • Password
spray signal: List targets
for a static password.

• ftp.response.code == 530 •
(ftp.response.code == 530) and (ftp.response.arg contains
"username")

• (ftp.request.command == "PASS") and
(ftp.request.arg == "password")

51

Cleartext Protocol Analysis: HTTP

HTTPAnalysis
Hypertext Transfer Protocol (HTTP) is a cleartext-based, request-response and client-server
protocol. It is the standard type of network activity to request/serve web pages, and by default, it is
not blocked by any network
perimeter. As a result of being unencrypted and the backbone of web traffic, HTTP is one of the
must-to-know protocols in traffic analysis. Following attacks could be detected with the help of
HTTP analysis:

Phishing pages

Web attacks

Data exfiltration

Command and control traffic (C2) HTTP analysis in a

nutshell:

Notes Wireshark Filter

Global search Note: HTTP2 is a revision of the HTTP protocol for
better performance and security. It supports binary data
transfer and request&response multiplexing.

• http • http2

"HTTP Request Methods" for grabbing the low-hanging fruits: •
GET • POST • Request: Listing all requests

• http.request.method == "GET" •
http.request.method ==

"POST" • http.request

"HTTP Response Status Codes" for grabbing the low-hanging • http.response.code ==

52

fruits: • 200 OK: Request successful. • 301 Moved Permanently:
Resource is moved to a new URL/path (permanently). • 302 Moved
Temporarily: Resource is moved to a new URL/path (temporarily). •
400 Bad Request: Server didn't understand the request. • 401
Unauthorised: URL needs authorisation (login, etc.). • 403
Forbidden: No access to the requested URL. • 404 Not Found:
Server can't find the requested URL. • 405 Method Not Allowed:
Used method is not suitable or blocked. • 408 Request Timeout:
Request look longer than server wait time. • 500 Internal Server
Error: Request not completed, unexpected error. • 503 Service
Unavailable: Request not completed server or service is down.

200 • http.response.code

== 401 •
http.response.code ==

403 • http.response.code

== 404 •
http.response.code ==

405 • http.response.code

== 503

"HTTP Parameters" for grabbing the low-hanging fruits: • User agent:
Browser and operating system identification to a web
server application. • Request URI: Points the requested resource from
the server. • Full
*URI: Complete URI information. *URI: Uniform Resource
Identifier.

• http. user_agent contains

"nmap" • http. request . uri

contains "admin" •
http. request . full_uri
contains "admin"

"HTTP Parameters" for grabbing the low-hanging fruits: • Server:
Server service name. • Host: Hostname of the server • Connection:
Connection status. • Line-based text
data: Cleartext data provided by the server. • HTML Form URL
Encoded:Web form information.

• http. server contains "apache" •
http. host contains "keyword" •
http. host ==

"keyword" •
http. connection ==

"Keep-Alive" • data-text- lines

contains "keyword"

User Agent Analysis
As the adversaries use sophisticated technics to accomplish attacks, they try to leave traces similar
to natural traffic through the known and trusted protocols.

For a security analyst, it is important to spot the anomaly signs on the bits and pieces of the
packets. The "user-agent" field is one of the great resources for spotting anomalies in HTTP
traffic.

In some cases, adversaries successfullymodify the user-agent data, which could look super natural.

A security analyst cannot rely only on the user-agent field to spot an anomaly.

Never whitelist a user agent, even if it looks natural.

53

User agent-based anomaly/threat detection/hunting is an additional data source to check and is
useful when there is an obvious anomaly. If you are unsure about a value, you can conduct a web
search to validate your findings with the default and normal user-agent info (example site).

User Agent analysis in a nutshell:

Notes Wireshark Filter

Global search. • http.user_agent

Research outcomes for grabbing the low-hanging fruits: •
Different user agent information from the same host in a
short time notice. • Non-standard and custom user agent
info. • Subtle spelling differences. ("Mozilla" is not the
same as "Mozlilla" or "Mozlila") • Audit tools info like
Nmap, Nikto, Wfuzz and sqlmap in the user agent field. •
Payload data in the user agent field.

• (http.user_agent contains "sqlmap") or
(http.user_agent contains "Nmap") or (http.user_agent
contains"Wfuzz") or (http.user_agentcontains"Nikto")

Log4j Analysis
Log4j Analysis refers to the process of examining and assessing the logs generated by the Apache
Log4j framework in order to identify security vulnerabilities, operational issues, or other relevant
insights within an application or system.

54

A proper investigation starts with prior research on threats and anomalies going to be hunted.
Let's review the knowns on the "Log4j" attack before launching Wireshark.

Log4j vulnerability analysis in a nutshell:

Notes Wireshark Filters

Research outcomes for
grabbing the low-hanging
fruits: • The attack starts with
a "POST" request • There are
known cleartext patterns:
"jndi:ldap" and
"Exploit.class".

• http.request.method == "POST" • (ip contains "jndi") or (ip contains "Exploit") • (frame

contains "jndi") or (frame contains "Exploit") • (http.user_agent contains "$") or

(http.user_agent contains "==")

Encrypted Protocol Analysis: Decrypting HTTPS

DecryptingHTTPSTraffic
When investigating web traffic, analysts often run across encrypted traffic. This is caused by
using the Hypertext Transfer Protocol Secure (HTTPS)
protocol for enhanced security against spoofing, sniffing and intercepting attacks.

55

HTTPS uses TLS protocol to encrypt communications, so it is impossible to decrypt the traffic and
view the transferred data without having the encryption/decryption key pairs.

As this protocol provides a good level of security for transmitting sensitive data, attackers and
malicious websites also use HTTPS.

Therefore, a security analyst should know how to use key files to decrypt encrypted traffic and
investigate the traffic activity.

The packets will appear in different colours as the HTTP traffic is encrypted. Also, protocol and info
details (actual URL address and data returned from the server) will not be fully visible. The first image
below shows the HTTP packets encrypted with the TLS protocol. The second and third images
demonstrate filtering HTTP packets without using a key log file.

Additional information for HTTPS :

Notes Wireshark Filter

"HTTPS Parameters" for grabbing the low-hanging fruits: • Request:
Listing all requests • TLS: Global TLS search • TLS Client Request • TLS
Server response • Local Simple Service Discovery

• http.request • tls •
tls.handshake.type

== 1 •

Protocol (SSDP) Note: SSDP is a network protocol that provides
advertisement and discovery of network services.

tls.handshake.type

== 2 • ssdp

Similar to the TCP three-way handshake process, the TLS protocol has its handshake process.

The first two steps contain "Client Hello" and "Server Hello" messages.

56

The given filters show the initial hello packets in a capture file. These filters are helpful to spot
which IP addresses are involved in the TLS handshake.

Client Hello:

Server Hello: (http.request or tls.handshake.type == 2) and !(ssdp)

(http.request or tls.handshake.type == 1) and !(ssdp)

57

An encryption key log file is a text file that contains unique key pairs to decrypt the encrypted
traffic session.

These key pairs are automatically created (per session) when a connection is established with an
SSL/TLS-enabled webpage.

As these processes are all accomplished in the browser, you need to configure your system and use a
suitable browser (Chrome and Firefox support this) to save these values as a key log file.

58

To do this, you will need to set up an environment variable and create the SSLKEYLOGFILE,
and the browser will dump the keys to this file as you browse the web.

SSL/TLS key pairs are created per session at the connection time, so it is important to dump the
keys during the traffic capture. Otherwise, it is not possible to create/generate a suitable key log file
to decrypt captured traffic.

You can use the "right-click" menu or "Edit --> Preferences --> Protocols --
> TLS" menu to add/remove key log files.

Adding key log files with the "right-click" menu:

Adding key log files with the "Edit --> Preferences --> Protocols --> TLS" menu:

Viewing the traffic with/without the key log files:

59

The above image shows that the traffic details are visible after using the key log file. Note that the
packet details and bytes pane provides the data in different formats for investigation. Decompressed
header info and HTTP2 packet details are available after decrypting the traffic. Depending on the
packet details, you can also have the following data formats:

Frame

Decrypted TLS

Decompressed Header Reassembled

TCP

Reassembled SSL

Hunt Cleartext Credentials!
Bonus: Hunt Cleartext Credentials!

60

Some Wireshark dissectors (FTP, HTTP, IMAP, pop and SMTP) are programmed to extract
cleartext passwords from the capture file. You can view detected credentials using the "Tools -->
Credentials" menu. This
feature works only after specific versions of Wireshark (v3.1 and later). Since the feature works
only with particular protocols, it is suggested to have
manual checks and not entirely rely on this feature to decide if there is a cleartext credential in the
traffic.

Once you use the feature, it will open a new window and provide detected credentials. It will show
the packet number, protocol, username and
additional information. This window is clickable; clicking on the packet
number will select the packet containing the password, and clicking on the username will select the
packet containing the username info. The additional part prompts the packet number that contains
the username.

Actionable Results!
Wireshark is not all about packet details; it can help you to create firewall rules ready to implement
with a couple of clicks.

You can create firewall rules by using the "Tools -->
Firewall ACL Rules" menu. Once you use this feature, it will open a new window and provide a
combination of rules (IP, port and MAC address-
based) for different purposes. Note that these rules are generated for implementation on an outside
firewall interface.

Currently, Wireshark can create rules for: Netfilter

(iptables)

Cisco IOS (standard/extended)

61

IP Filter (ipfilter) IPFirewall

(ipfw) Packet filter (pf)

Windows Firewall (netsh new/old format)

Tasks:
Task 1: Capturing and Exporting Objects

1. Capture network traffic using Wireshark.
2. Identify and extract transferred files from HTTP, SMB, or TFTP streams.
3. Document findings with screenshots.

Task 2: Time Display Format Analysis

1. Change Wireshark’s time display format to UTC.
2. Compare and analyze packet timing differences.
3. Submit observations with relevant screenshots.

Task 3: Expert Info Analysis

1. Identify anomalies using Wireshark’s Expert Info feature.
2. Classify errors, warnings, and malformed packets.
3. Provide a detailed explanation of identified issues.

Task 4: Applying Filters for Traffic Analysis

1. Use “Apply as Filter” to isolate specific network traffic.
2. Utilize conversation filters to analyze related packets.
3. Provide examples and screenshots of applied filters.

Task 5: Analyzing HTTP Streams

1. Follow an HTTP stream to reconstruct application-layer data.
2. Identify and document potential sensitive information.
3. Submit a report including step-by-step findings.

Task 6: Statistical Analysis

62

1. Use the Statistics menu to analyze protocol hierarchy and endpoints.
2. Extract key insights about network traffic patterns.
3. Document results and interpretations.

Task 7: Resolving Addresses and Protocol Hierarchy

1. Use Wireshark to resolve IP addresses to hostnames.
2. View the protocol hierarchy to analyze network traffic structure.
3. Submit a summary of key findings.

Submission Requirements:

 A detailed report including:

o Screenshots of each task performed.
o Explanation of results and insights gained.
o Summary of findings and security recommendations.

 Submit the report by Next Lab.

This assignment will help students develop practical skills in network packet analysis usingWireshark.
Good luck!

	Introduction to Wireshark and Its Importance in Cy
	Why Wireshark is Used in Cybersecurity?

	Export Objects (Files)
	Time Display Format
	Expert Info
	Apply as Filter
	Conversation filter
	Colourise Conversation
	Prepare as Filter
	Apply as Column
	Follow Stream

	Statistics
	Resolved Addresses
	Protocol Hierarchy
	Conversations
	Endpoints
	IPv4 and IPv6
	DNS
	HTTP
	Bookmarks and Filtering Buttons
	Profiles

	Packet Filtering
	 Capture Filter Syntax
	 Sample filter to capture port 80 traffic:

	Display Filter Syntax
	 Sample filter to capture port 80 traffic:
	Comparison Operators
	Logical Expressions

	Packet Filter Toolbar
	Protocol Filters
	IP Filters
	TCP
	Application Level Protocol Filters | and DNS
	Display Filter Expressions

	Advanced Filtering
	Wireshark: Traffic Analysis
	 Nmap Scans
	 TCP connect scans SYN scans

	TCP
	TCP Connect Scan in a nutshell:
	Open TCP port (Connect):

	SYN Scans
	Open TCP port (SYN):

	UDP
	 Doesn't require a handshake process No prompt
	Closed (port no 69) and open (port no 68) UDP port
	ARP Poisoning & Man In The Middle!
	ARP analysis in a nutshell:

	Identifying Hosts
	Protocols that can be used in Host and User identi
	DHCP

	NetBIOS (NBNS) Analysis
	Kerberos Analysis
	Tunnelling Traffic: ICMP and DNS
	ICMP Analysis
	ICMP analysis in a nutshell:

	DNS Analysis
	DNS analysis in a nutshell:
	"encoded-commands.maliciousdomain.com"

	Cleartext Protocol Analysis
	FTP Analysis
	HTTP Analysis
	 Web attacks
	User Agent Analysis

	Log4j Analysis
	Decrypting HTTPS Traffic
	Additional information for HTTPS :
	Adding key log files with the "right-click" menu:
	Viewing the traffic with/without the key log files
	Hunt Cleartext Credentials!
	Bonus: Hunt Cleartext Credentials!

	Actionable Results!
	Task 1: Capturing and Exporting Objects
	Task 2: Time Display Format Analysis
	Task 3: Expert Info Analysis
	Task 4: Applying Filters for Traffic Analysis
	Task 5: Analyzing HTTP Streams
	Task 6: Statistical Analysis
	Task 7: Resolving Addresses and Protocol Hierarchy

	Submission Requirements:

